Part Number Hot Search : 
MC68HC0 722C0 PVINT375 555C1H1 SRA8150 SA155 215DH PU4120Q
Product Description
Full Text Search
 

To Download EBE51RD8AEFA-6E-E Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 DATA SHEET
512MB Registered DDR2 SDRAM DIMM
EBE51RD8AEFA-6 (64M words x 72 bits, 1 Rank)
Description
The EBE51RD8AEFA is a 64M words x 72 bits, 1 rank DDR2 SDRAM Module, mounting 9 pieces of DDR2 SDRAM sealed in FBGA package. Read and write operations are performed at the cross points of the CK and the /CK. This high-speed data transfer is realized by the 4bits prefetch-pipelined architecture. Data strobe (DQS and /DQS) both for read and write are available for high speed and reliable data bus design. By setting extended mode register, the on-chip Delay Locked Loop (DLL) can be set enable or disable. This module provides high density mounting without utilizing surface mount technology. Decoupling capacitors are mounted beside each FBGA on the module board. Note: Do not push the components or drop the modules in order to avoid mechanical defects, which may result in electrical defects.
Features
* 240-pin socket type dual in line memory module (DIMM) PCB height: 30.0mm Lead pitch: 1.0mm Lead-free (RoHS compliant) * Power supply: VDD = 1.8V 0.1V * Data rate: 667Mbps (max.) * SSTL_18 compatible I/O * Double-data-rate architecture: two data transfers per clock cycle * Bi-directional, data strobe (DQS and /DQS) is transmitted /received with data, to be used in capturing data at the receiver * DQS is edge aligned with data for READs; center aligned with data for WRITEs * Differential clock inputs (CK and /CK) * DLL aligns DQ and DQS transitions with CK transitions * Commands entered on each positive CK edge; data referenced to both edges of DQS * Four internal banks for concurrent operation (components) * Data mask (DM) for write data * Burst length: 4, 8 * /CAS latency (CL): 3, 4, 5 * Auto precharge option for each burst access * Auto refresh and self refresh modes * Average refresh period 7.8s at 0C TC +85C 3.9s at +85C < TC +95C * Posted CAS by programmable additive latency for better command and data bus efficiency * Off-Chip-Driver Impedance Adjustment and On-DieTermination for better signal quality * /DQS can be disabled for single-ended Data Strobe operation * 1 piece of PLL clock driver, 1 pieces of register driver and 1 piece of serial EEPROM (2k bits EEPROM) for Presence Detect (PD)
EO
Document No. E0789E11 (Ver. 1.1) Date Published February 2006 (K) Japan Printed in Japan URL: http://www.elpida.com
L
This Product became EOL in November, 2006.
Elpida Memory, Inc. 2005-2006
Pr
od
uc
t
EBE51RD8AEFA-6
Ordering Information
Data rate Mbps (max.) 667 Component 1 JEDEC speed bin* (CL-tRCD-tRP) DDR2-667 (5-5-5) Contact pad Gold
Part number EBE51RD8AEFA-6E-E
Package 240-pin DIMM (lead-free)
Mounted devices EDE5108AESK-6E-E
Note: 1. Module /CAS latency = component CL + 1
Pin Configurations
Front side 1 pin 64 pin 65 pin 120 pin
EO
Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Pin name VREF VSS DQ0 DQ1 VSS /DQS0 DQS0 VSS DQ2 DQ3 VSS DQ8 DQ9 VSS /DQS1 DQS1 VSS /RESET NC VSS DQ10 DQ11 VSS DQ16 DQ17 VSS /DQS2 DQS2 VSS
Data Sheet E0789E11 (Ver. 1.1)
121 pin Back side
184 pin 185 pin
240 pin
Pin No. 61 62 63 64
Pin name A4 VDD A2 VDD VSS VSS VDD NC/Par_In VDD A10
Pin No. 121 122 123 124 125 126 127 128 129
Pin name VSS DQ4 DQ5 VSS DM0/DQS9 NU/ /DQS9 VSS DQ6 DQ7 VSS DQ12 DQ13 VSS DM1/DQS10 NU/ /DQS10 VSS
Pin No. 181 182 183 184 185 186 187 188 189 190 191 192 193 194
Pin name VDD A3 A1 VDD CK0 /CK0 VDD A0 VDD BA1 VDD /RAS /CS0 VDD ODT0 A13 VDD VSS DQ36 DQ37 VSS
L
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
Pr
130 BA0 131 VDD /WE 132 133 /CAS VDD NC NC VDD VSS DQ32 DQ33 VSS /DQS4 DQS4 VSS DQ34 DQ35 VSS DQ40 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
od
195 196 NC 197 NC 198 VSS 199 DQ14 200 DQ15 VSS 201 202 DQ20 203 DQ21 VSS 204 205 DM2/DQS11 NU/ /DQS11 VSS DQ22 206 207 208 209
uc
DM4/DQS13 NU/ /DQS13 VSS DQ38 DQ39 VSS
t
DQ44 DQ45
2
EBE51RD8AEFA-6
Pin No. 30 31 32 33 34 35 36 37 38 39 40 Pin name DQ18 DQ19 VSS DQ24 DQ25 VSS /DQS3 DQS3 VSS DQ26 DQ27 VSS Pin No. 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 Pin name DQ41 VSS /DQS5 DQS5 VSS DQ42 DQ43 VSS DQ48 DQ49 VSS SA2 NC VSS /DQS6 DQS6 VSS DQ50 DQ51 VSS DQ56 DQ57 VSS Pin No. 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 Pin name DQ23 VSS DQ28 DQ29 VSS DM3/DQS12 NU/ /DQS12 VSS DQ30 DQ31 VSS CB4 CB5 VSS DM8/DQS17 NU/ /DQS17 VSS CB6 CB7 VSS VDD NC VDD NC NC VDD A12 A9 VDD A8 Pin No. 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 Pin name VSS DM5/DQS14 NU/ /DQS14 VSS DQ46 DQ47 VSS DQ52 DQ53 VSS NC NC VSS DM6/DQS15 NU/ /DQS15 VSS DQ54 DQ55 VSS DQ60 DQ61 VSS DM7/DQS16 NU/ /DQS16 VSS DQ62 DQ63 VSS VDDSPD SA0 SA1
EO
41 42 CB0 43 44 45 CB1 VSS /DQS8 DQS8 46 47 VSS CB2 48 49 50 51 52 53 54 55 56 57 58 59 60 CB3 VSS VDD CKE0 VDD NC NC/Err_Out VDD A11 A7 VDD A5
Data Sheet E0789E11 (Ver. 1.1)
L
109 110 111 112 113 114 115 116 117 118 119 120
Pr
/DQS7 DQS7 VSS 173 174 175 DQ58 176 DQ59 VSS SDA SCL 177 178 179 180
od
239 A6 240
uc t
3
EBE51RD8AEFA-6
Pin Description
Pin name A0 to A13 A10 (AP) BA0, BA1 DQ0 to DQ63 CB0 to CB7 /RAS /CAS /WE Function Address input Row address Column address Auto precharge Bank select address Data input/output Check bit (Data input/output) Row address strobe command Column address strobe command Write enable Chip select Clock enable Clock input Differential clock input Input and output data strobe Input mask Clock input for serial PD Data input/output for serial PD Serial address input Power for internal circuit Power for serial EEPROM Input reference voltage A0 to A13 A0 to A9
EO
/CS0 CKE0 CK0 /CK0 DM0 to DM8 SCL SDA SA0 to SA2 VDD VDDSPD VREF VSS ODT0 /RESET NC Par_In*
2 2
DQS0 to DQS17, /DQS0 to /DQS17
L
Pr
Ground ODT control No connection Not usable
Reset pin (forces register and PLL inputs low) *
1
Parity bit for the address and control bus
Err_Out* NU
Parity error found on the address and control bus
Note: 1. Reset pin is connected to both OE of PLL and reset to register. 2. NC/Err_Out (Pin No. 55) and NC/Par_In (Pin No. 68) are for optional function to check address and command parity.
od
4
uc t
Data Sheet E0789E11 (Ver. 1.1)
EBE51RD8AEFA-6
Serial PD Matrix*1
Byte No. 0 1 2 3 4 5 6 7 8 9 Function described Number of bytes utilized by module manufacturer Total number of bytes in serial PD device Memory type Number of row address Number of column address Number of DIMM ranks Module data width Module data width continuation Bit7 1 0 0 0 0 0 0 0 Bit6 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 Bit5 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 Bit4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 Bit3 0 1 1 1 1 0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 Bit2 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 Bit1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 Bit0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 Hex value 80H 08H 08H 0EH 0AH 60H 48H 00H 05H 30H 45H 02H 82H 08H 08H 00H 0CH 04H 38H 01H 01H 00H 03H 3DH 50H Comments 128 bytes 256 bytes DDR2 SDRAM 14 10 1 72 0 SSTL 1.8V 3.0ns*
1 1
EO
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Reserved
Data Sheet E0789E11 (Ver. 1.1)
Voltage interface level of this assembly 0 0 0 0 1 0 0 0 0 0 0 0
DDR SDRAM cycle time, CL = 5 SDRAM access from clock (tAC)
0.45ns* ECC 7.8s x8 x8 0 4,8 4 3, 4, 5
DIMM configuration type
Refresh rate/type Primary SDRAM width
Error checking SDRAM width
SDRAM device attributes: Burst length supported SDRAM device attributes: Number of banks on SDRAM device SDRAM device attributes: /CAS latency DIMM Mechanical Characteristics DIMM type information
SDRAM module attributes
SDRAM device attributes: General
Minimum clock cycle time at CL = 4
Maximum data access time (tAC) from 0 clock at CL = 4 Minimum clock cycle time at CL = 3 0 Maximum data access time (tAC) from 0 clock at CL = 3 Minimum row precharge time (tRP) Minimum row active to row active delay (tRRD) Minimum /RAS to /CAS delay (tRCD) Minimum active to precharge time (tRAS) Module rank density 0 0 0 0 1
Address and command setup time 0 before clock (tIS) Address and command hold time after 0 clock (tIH) Data input setup time before clock 0 (tDS)
L
Pr
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0
4.00mm max. Registered Normal Weak Driver 50 ODT Support 3.75ns* 0.5ns* 5.0ns* 0.6ns* 15ns 7.5ns
1 1
od
0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
50H 60H
1
1
3CH 1EH
uc
3CH 15ns 2DH 45ns 80H 512M byte 0.20ns* 0.28ns* 0.10ns*
1
20H 28H 10H
1
t
1
5
EBE51RD8AEFA-6
Byte No. 35 36 37 38 39 40 41 42 43
Function described Data input hold time after clock (tDH) Write recovery time (tWR) Internal write to read command delay (tWTR) Internal read to precharge command delay (tRTP)
Bit7 0 0 0 0
Bit6 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 x 1 1 1
Bit5 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 x 0 0 0
Bit4 1 1 1 1 0 0 1 0 0 1 0 0 0 1 1 1 1 0 x 0 0 0
Bit3 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 1 1 0 x 0 0 0
Bit2 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 x 1 0 1 1 0 0 1 0
Bit1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0 x 0 1 0 0 0 1 0 0
Bit0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 x 1 0 1 1 1 0 0 0
Hex value 18H 3CH 1EH 1EH 00H 00H 3CH 69H 80H 18H 22H 0FH 00H 12H 93H 7FH FEH 00H xx 45H 42H 45H 35H 31H 52H 44H 38H 41H 45H
Comments 0.18ns* 15ns*
1 1
7.5ns* 7.5ns* TBD
1
1
Memory analysis probe characteristics 0 Extension of Byte 41 and 42 Active command period (tRC) Auto refresh to active/ Auto refresh command cycle (tRFC) SDRAM tCK cycle max. (tCK max.) Dout to DQS skew 0 0 0 1 0 0 0 0 0 1 0 1 0 x 0 0 0
Undefined 60ns*
1
105ns* 8ns*
1
1
EO
44 45 46 PLL relock time 47 to 61 62 SPD Revision 63 64 to 65 66 67 to 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 Revision code Revision code
Data Sheet E0789E11 (Ver. 1.1)
0.24ns* 0.34ns* 15s
1 1
Data hold skew (tQHS)
Rev. 1.2
Checksum for bytes 0 to 62
Manufacturer's JEDEC ID code
Continuation code Elpida Memory
Manufacturer's JEDEC ID code Manufacturer's JEDEC ID code Manufacturing location Module part number Module part number Module part number Module part number Module part number Module part number Module part number Module part number Module part number Module part number Module part number Module part number Module part number Module part number Module part number Module part number Module part number Module part number
L
(ASCII-8bit code) E B E 5 1 R D 8 A E F A --
Pr
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0
od
0 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
46H 41H
2DH 36H
uc
6 45H E 2DH 45H -- E 20H (Space) Initial 30H
t
(Space)
20H
6
EBE51RD8AEFA-6
Byte No. 93 94 95 to 98 99 to 127
Function described Manufacturing date Manufacturing date Module serial number Manufacture specific data
Bit7 x x
Bit6 x x
Bit5 x x
Bit4 x x
Bit3 x x
Bit2 x x
Bit1 x x
Bit0 x x
Hex value xx xx
Comments Year code (BCD) Week code (BCD)
Note: 1. These specifications are defined based on component specification, not module.
EO
Data Sheet E0789E11 (Ver. 1.1)
L Pr od uc t
7
EBE51RD8AEFA-6
Block Diagram
/RCS0 RS /DQS0 RS DQS0 RS /DQS9 RS DM0/DQS9 8 DQ0 to DQ7 RS /DQS1 RS DQS1 DQS5 RS RS RS RS NU/ /CS DQS /DQS /RDQS DM/ RDQS /DQS14 RS DM5/DQS14 8 DQ40 to DQ47 RS /DQS6 RS DQS6 NU/ /CS DQS /DQS /RDQS DM/ RDQS DQ0 to DQ7 RS /DQS15 RS DM0/DQS15 8 DQ48 to DQ55 RS /DQS7 RS DQS7 RS NU/ /CS DQS /DQS /RDQS DM/ RDQS /DQS16 RS 8 RS DM0/DQS16 NU/ /CSDQS /DQS /RDQS DM/ /RDQS RS NU/ /CS DQS /DQS /RDQS DM/ /RDQS DQ0 to DQ7 RS NU/ /CS DQS /DQS /RDQS DM/ /RDQS /DQS5 RS RS NU/ /CS DQS /DQS /RDQS DM/ RDQS DQ0 to DQ7 RS /DQS4 RS DQS4 RS /DQS13 RS DM4/DQS13 8 DQ32 to DQ39 RS RS NU/ /CS DQS /DQS /RDQS DM, RDQS DQ0 to DQ7
D0
D4
EO
/DQS10 DM0/DQS10 8 DQ8 to DQ15 /DQS2 DQS2 /DQS11 DM2/DQS11 8 DQ16 to DQ23 /DQS3 DQS3 /DQS12 DM3/DQS12 8 DQ24 to DQ31 /DQS8 DQS8 /DQS17 DM0/DQS17 8 CB0 to CB7
D1
D5
DQ0 to DQ7
DQ0 to DQ7
RS RS RS RS RS1
D2
D6
L
RS RS RS RS RS
DQ0 to DQ7
Pr
D3
DQ56 to DQ63
D7
DQ0 to DQ7
RS RS RS RS RS
NU/ /CS DQS /DQS /RDQS DM/ /RDQS
Serial PD
VDDSPD SDA VDD
Serial PD D0 to D8 D0 to D8 D0 to D8
D8
SCL
od
SCL SDA
DQ0 to DQ7
U0
VREF VSS
WP A0 A1 A2
/CS0*2 BA0 to BA1 A0 to A13 /RAS /CAS CKE0 /WE ODT0
RS RS RS RS RS RS RS RS
SA0 SA1 SA2
R E G I S T E R
/RCS0 -> /CS: SDRAMs D0 to D8 RBA0 to RBA1 -> BA0 to BA1: SDRAMs D0 to D8 RA0 to RA13 -> A0 to A13: SDRAMs D0 to D8 /RRAS -> /RAS: SDRAMs D0 to D8 /RCAS -> /CAS: SDRAMs D0 to D8 RCKE0 -> CKE: SDRAMs D0 to D8 /RWE -> /WE: SDRAMs D0 to D8 RODT0 -> ODT0: SDRAMs D0 to D8
Notes: 1. DQ wiring may be changed within a byte.
D0 to D8: 512M bits DDR2 SDRAM U0: 2k bits EEPROM RS: 22 PLL: CUA877 Register: SSTUA32866
2. /CS0 connects to D/CS and VDD connects to /CSR on register.
uc
/RST /RESET PCK7
/PCK7
CK0 /CK0 /RESET
P L L OE
PCK0 to PCK6, PCK8, PCK9 -> CK: SDRAMs D0 to D8 /PCK0 to /PCK6, /PCK8, /PCK9 -> /CK: SDRAMs D0 to D8 PCK7 -> CK: register /PCK7 -> /CK: register
t
Data Sheet E0789E11 (Ver. 1.1)
8
EBE51RD8AEFA-6
Differential Clock Net Wiring (CK0, /CK0)
0ns (nominal)
PLL OUT1
SDRAM
CK0
120 IN
120
EO
/CK0
Data Sheet E0789E11 (Ver. 1.1)
Register 1
120 C Feedback in
OUT'N'
Feedback out
C
120
Notes: 1. The clock delay from the input of the PLL clock to the input of any SDRAM or register willl be set to 0ns (nominal). 2. Input, output and feedback clock lines are terminated from line to line as shown, and not from line to ground. 3. Only one PLL output is shown per output type. Any additional PLL outputs will be wired in a similar manner. 4. Termination resistors for the PLL feedback path clocks are located as close to the input pin of the PLL as possible.
L
Pr
9
od uc t
EBE51RD8AEFA-6
Electrical Specifications
* All voltages are referenced to VSS (GND). Absolute Maximum Ratings
Parameter Voltage on any pin relative to VSS Supply voltage relative to VSS Short circuit output current Power dissipation Operating case temperature Storage temperature Symbol VT VDD IOS PD TC Tstg Value -0.5 to +2.3 -0.5 to +2.3 50 9 0 to +95 -55 to +100 Unit V V mA W C C 1, 2 1 1 Note 1
Note: 1. DDR2 SDRAM component specification. 2. Supporting 0C to +85C and being able to extend to +95C with doubling auto-refresh commands in frequency to a 32ms period (tREFI = 3.9s) and higher temperature self-refresh entry via the control of EMRS (2) bit A7 is required. Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. DC Operating Conditions (TC = 0C to +85C) (DDR2 SDRAM Component Specification)
EO
Parameter Supply voltage Input reference voltage Termination voltage DC input logic high DC input low AC input logic high AC input low
Data Sheet E0789E11 (Ver. 1.1)
Notes: 1. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to be about 0.5 x VDDQ of the transmitting device and VREF are expected to track variations in VDDQ. 2. Peak to peak AC noise on VREF may not exceed 2% VREF (DC). 3. VTT of transmitting device must track VREF of receiving device. 4. VDDQ must be equal to VDD.
L
Symbol VDD, VDDQ VSS VDDSPD VREF VTT VIH (DC) VIL (DC) VIH (AC) VIL (AC)
min. 1.7 0 1.7 0.49 x VDDQ VREF - 0.04 -0.3
typ. 1.8 0 --
max. 1.9 0 3.6
Unit V V V V V V V V V
Notes 4
Pr
VREF VREF + 0.125 VREF + 0.200
0.50 x VDDQ 0.51 x VDDQ VREF + 0.04 VDDQ + 0.3 VREF - 0.125 VREF - 0.200
1, 2 3
od
10
uc t
EBE51RD8AEFA-6
DC Characteristics 1 (TC = 0C to +85C, VDD = 1.8V 0.1V, VSS = 0V)
Parameter Symbol Grade max. Unit Test condition one bank; tCK = tCK (IDD), tRC = tRC (IDD), tRAS = tRAS min.(IDD); CKE is H, /CS is H between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING one bank; IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK (IDD), tRC = tRC (IDD), tRAS = tRAS min.(IDD); tRCD = tRCD (IDD); CKE is H, /CS is H between valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W all banks idle; tCK = tCK (IDD); CKE is L; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING all banks idle; tCK = tCK (IDD); CKE is H, /CS is H; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING all banks idle; tCK = tCK (IDD);CKE is H, /CS is H; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING all banks open; tCK = tCK (IDD); CKE is L; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING Fast PDN Exit MRS(12) = 0
Operating current (ACT-PRE)
IDD0
1570
mA
Operating current (ACT-READ-PRE)
IDD1
1760
mA
EO
Precharge power-down standby current Precharge quiet standby current Idle standby current Active power-down standby current Active standby current Operating current (Burst read operating) Operating current (Burst write operating)
Data Sheet E0789E11 (Ver. 1.1)
IDD2P
600
mA
IDD2Q
730
mA
L
IDD2N IDD3P-F IDD3P-S IDD3N IDD4R IDD4W
820
mA
870
mA
Pr
730 mA 1160 mA 2660 mA 2570 mA
Slow PDN Exit MRS(12) = 1
all banks open; tCK = tCK (IDD), tRAS = tRAS max.(IDD), tRP = tRP (IDD); CKE is H, /CS is H between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING all banks open, continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK (IDD), tRAS = tRAS max.(IDD), tRP = tRP (IDD); CKE is H, /CS is H between valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W all banks open, continuous burst writes; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK (IDD), tRAS = tRAS max.(IDD), tRP = tRP (IDD); CKE is H, /CS is H between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING
od
11
uc
t
EBE51RD8AEFA-6
Parameter
Symbol
Grade
max.
Unit
Test condition tCK = tCK (IDD); Refresh command at every tRFC (IDD) interval; CKE is H, /CS is H between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING Self Refresh Mode; CK and /CK at 0V; CKE 0.2V; Other control and address bus inputs are FLOATING; Data bus inputs are FLOATING all bank interleaving reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = tRCD (IDD) -1 x tCK (IDD); tCK = tCK (IDD), tRC = tRC (IDD), tRRD = tRRD(IDD), tRCD = 1 x tCK (IDD); CKE is H, CS is H between valid commands; Address bus inputs are STABLE during DESELECTs; Data pattern is same as IDD4W;
Auto-refresh current
IDD5
2950
mA
Self-refresh current
IDD6
80
mA
Operating current (Bank interleaving)
EO
Notes: 1. 2. 3. 4.
Parameter CL(IDD) tRCD(IDD) tRC(IDD) tRRD(IDD) tCK(IDD) tRAS(min.)(IDD) tRAS(max.)(IDD) tRP(IDD) tRFC(IDD)
Data Sheet E0789E11 (Ver. 1.1)
IDD7
3720
mA
IDD specifications are tested after the device is properly initialized. Input slew rate is specified by AC Input Test Condition. IDD parameters are specified with ODT disabled. Data bus consists of DQ, DM, DQS, /DQS, RDQS, /RDQS, LDQS, /LDQS, UDQS, and /UDQS. IDD values must be met with all combinations of EMRS bits 10 and 11. 5. Definitions for IDD L is defined as VIN VIL (AC) (max.) H is defined as VIN VIH (AC) (min.) STABLE is defined as inputs stable at an H or L level FLOATING is defined as inputs at VREF = VDDQ/2 SWITCHING is defined as: inputs changing between H and L every other clock cycle (once per two clocks) for address and control signals, and inputs changing between H and L every other data transfer (once per clock) for DQ signals not including masks or strobes. 6. Refer to AC Timing for IDD Test Conditions.
AC Timing for IDD Test Conditions For purposes of IDD testing, the following parameters are to be utilized.
DDR2-667 5-5-5 5 15 60 7.5 3 45 70000 15 105
L
Pr
12
od
Unit tCK ns ns ns
uc
ns ns ns ns ns
t
EBE51RD8AEFA-6
DC Characteristics 2 (TC = 0C to +85C, VDD, VDDQ = 1.8V 0.1V) (DDR2 SDRAM Component Specification)
Parameter Input leakage current Output leakage current Symbol ILI ILO Value 2 5 VTT + 0.603 VTT - 0.603 0.5 x VDDQ +13.4 -13.4 Unit A A V V V mA mA Notes VDD VIN VSS VDDQ VOUT VSS 5 5 1 3, 4, 5 2, 4, 5
Minimum required output pull-up under AC VOH test load Maximum required output pull-down under VOL AC test load Output timing measurement reference level VOTR Output minimum sink DC current Output minimum source DC current IOL IOH
EO
Notes: 1. 2. 3. 4. 5.
Parameter AC differential input voltage
Data Sheet E0789E11 (Ver. 1.1)
The VDDQ of the device under test is referenced. VDDQ = 1.7V; VOUT = 1.42V. VDDQ = 1.7V; VOUT = 0.28V. The DC value of VREF applied to the receiving device is expected to be set to VTT. After OCD calibration to 18 at TC = 25C, VDD = VDDQ = 1.8V.
DC Characteristics 3 (TC = 0C to +85C, VDD, VDDQ = 1.8V 0.1V) (DDR2 SDRAM Component Specification)
AC differential cross point voltage AC differential cross point voltage
Notes: 1. VID(AC) specifies the input differential voltage |VTR -VCP| required for switching, where VTR is the true input signal (such as CK, DQS, LDQS or UDQS) and VCP is the complementary input signal (such as /CK, /DQS, /LDQS or /UDQS). The minimum value is equal to VIH(AC) - VIL(AC). 2. The typical value of VIX(AC) is expected to be about 0.5 x VDDQ of the transmitting device and VIX(AC) is expected to track variations in VDDQ . VIX(AC) indicates the voltage at which differential input signals must cross. 3. The typical value of VOX(AC) is expected to be about 0.5 x VDDQ of the transmitting device and VOX(AC) is expected to track variations in VDDQ . VOX(AC) indicates the voltage at which differential output signals must cross.
L
VTR VCP
Symbol
min. 0.5 0.5 x VDDQ - 0.175 0.5 x VDDQ - 0.125
max. VDDQ + 0.6 0.5 x VDDQ + 0.175 0.5 x VDDQ + 0.125
Unit V V V
Notes 1, 2 2 3
VID (AC) VIX (AC) VOX (AC)
Pr
VDDQ
VSSQ
Differential Signal Levels*1, 2
od
VID
Crossing point
VIX or VOX
uc t
13
EBE51RD8AEFA-6
ODT DC Electrical Characteristics (TC = 0C to +85C, VDD, VDDQ = 1.8V 0.1V) (DDR2 SDRAM Component Specification)
Parameter Rtt effective impedance value for EMRS (A6, A2) = 0, 1; 75 Rtt effective impedance value for EMRS (A6, A2) = 1, 0; 150 Rtt effective impedance value for EMRS (A6, A2) = 1, 1; 50 Deviation of VM with respect to VDDQ/2 Symbol Rtt1(eff) Rtt2(eff) Rtt3(eff) VM min. 60 120 40 -6 typ. 75 150 50 max. 90 180 60 +6 Unit % Note 1 1 1 1
Note: 1. Test condition for Rtt measurements. Measurement Definition for Rtt(eff) Apply VIH (AC) and VIL (AC) to test pin separately, then measure current I(VIH(AC)) and I(VIL(AC)) respectively. VIH(AC), and VDDQ values defined in SSTL_18.
EO
Parameter Output impedance Output slew rate Parameter Input capacitance Input capacitance Data and DQS input/output capacitance
Data Sheet E0789E11 (Ver. 1.1)
Rtt(eff) =
VIH(AC) - VIL(AC) I(VIH(AC)) - I(VIL(AC))
Measurement Definition for VM Measure voltage (VM) at test pin (midpoint) with no load.
VM =
2 x VM VDDQ
- 1 x 100%
OCD Default Characteristics (TC = 0C to +85C, VDD, VDDQ = 1.8V 0.1V) (DDR2 SDRAM Component Specification)
Pull-up and pull-down mismatch
Notes: 1. Impedance measurement condition for output source DC current: VDDQ = 1.7V; VOUT = 1420mV; (VOUT-VDDQ)/IOH must be less than 23.4 for values of VOUT between VDDQ and VDDQ-280mV. Impedance measurement condition for output sink DC current: VDDQ = 1.7V; VOUT = 280mV; VOUT/IOL must be less than 23.4 for values of VOUT between 0V and 280mV. 2. Mismatch is absolute value between pull up and pull down, both are measured at same temperature and voltage. 3. Slew rate measured from VIL(AC) to VIH(AC). 4. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as measured from AC to AC. This is guaranteed by design and characterization.
Pin Capacitance (TA = 25C, VDD = 1.8V 0.1V)
Symbol CI1 CI2 CO Pins Address, /RAS, /CAS, /WE, /CS, CKE, ODT CK, /CK DQ, DQS, /DQS, DM, CB min. 2.5 2.0 2.5
Notes: 1. Register component specification. 2. PLL component specification. 3. DDR2 SDRAM component specification.
L
Pr
min. typ. 12.6 18 0 1.5
max. 23.4 4 5
Unit V/ns
Notes 1 1, 2 3, 4
od
max. 3.5 3.0 3.5
uc
Unit Notes 1 pF pF 2 pF 3
t
14
EBE51RD8AEFA-6
AC Characteristics (TC = 0C to +85C, VDD, VDDQ = 1.8V 0.1V, VSS = 0V) (DDR2 SDRAM Component Specification)
-6E Frequency (Mbps) Parameter /CAS latency Active to read or write command delay Precharge command period Active to active/auto refresh command time DQ output access time from CK, /CK DQS output access time from CK, /CK CK high-level width CK low-level width CK half period Symbol CL tRCD tRP tRC tAC tDQSCK tCH tCL tHP tCK tDH tDS 667 min. 5 15 15 60 -450 -400 0.45 0.45 min. (tCL, tCH) 3000 175 100 0.6 0.35 tAC min. max. 5 +450 +400 0.55 0.55 8000 tAC max. tAC max. 240 340 WL + 0.25 Unit tCK ns ns ns ps ps tCK tCK ps ps ps ps tCK tCK ps ps ps ps ps tCK tCK tCK tCK tCK tCK tCK tCK ps ps tCK 5 4 5 4 Notes
EO
Clock cycle time DQ and DM input hold time DQ and DM input setup time DQ hold skew factor DQS input high pulse width DQS input low pulse width Write postamble Write preamble Read preamble Read postamble Write recovery time
Data Sheet E0789E11 (Ver. 1.1)
Control and Address input pulse width for each input tIPW DQ and DM input pulse width for each input Data-out high-impedance time from CK,/CK Data-out low-impedance time from CK,/CK
DQS-DQ skew for DQS and associated DQ signals
DQ/DQS output hold time from DQS
Write command to first DQS latching transition
DQS falling edge to CK setup time DQS falling edge hold time from CK
Mode register set command cycle time
Address and control input hold time Address and control input setup time
Active to precharge command Active to auto-precharge delay Active bank A to active bank B command period
Auto precharge write recovery + precharge time Internal write to read command delay Internal read to precharge command delay
L
tDIPW tHZ tLZ tDQSQ tQHS tQH
Pr
tHP - tQHS tDQSS WL - 0.25 tDQSH tDQSL tDSS 0.35 0.35 0.2 tDSH 0.2 tMRD 2 tWPST 0.4 tWPRE tIH tIS 0.35 275 200 tRPRE tRPST tRAS tRAP tRRD tWR tDAL tWTR tRTP 0.9 0.4 45 tRCD min. 7.5 15 (tWR/tCK)+ (tRP/tCK) 7.5 7.5
od
0.6 1.1 0.6 70000
uc
tCK ns ns ns ns tCK ns ns 1
t
15
EBE51RD8AEFA-6
-6E Frequency (Mbps) Parameter Exit self refresh to a non-read command Exit self refresh to a read command Exit precharge power down to any non-read command Exit active power down to read command Exit active power down to read command (slow exit/low power mode) Symbol tXSNR tXSRD tXP tXARD tXARDS 667 min. tRFC + 10 200 2 2 7- AL 3 0 105 tIS + tCK + tIH max. 12 7.8 3.9 Unit ns tCK tCK tCK tCK tCK ns ns s s ns 3 2, 3 Notes
CKE minimum pulse width (high and low pulse width) tCKE Output impedance test driver delay tOIT tRFC tREFI tREFI tDELAY
EO
(+85C < TC +95C)
Auto refresh to active/auto refresh command time Average periodic refresh interval (0C TC +85C) Minimum time clocks remains ON after CKE asynchronously drops low
Notes: 1. 2. 3. 4.
For each of the terms above, if not already an integer, round to the next higher integer. AL: Additive Latency. MRS A12 bit defines which active power down exit timing to be applied. The figures of Input Waveform Timing 1 and 2 are referenced from the input signal crossing at the VIH(AC) level for a rising signal and VIL(AC) for a falling signal applied to the device under test. 5. The figures of Input Waveform Timing 1 and 2 are referenced from the input signal crossing at the VIH(DC) level for a rising signal and VIL(DC) for a falling signal applied to the device under test.
L
tDH tDS tDH
DQS /DQS
CK
Pr
/CK
tIS
tIH
tIS
tIH VDDQ VIH (AC)(min.) VIH (DC)(min.) VREF VIL (DC)(max.) VIL (AC)(max.) VSS
tDS
VDDQ VIH (AC)(min.) VIH (DC)(min.) VREF VIL (DC)(max.) VIL (AC)(max.) VSS
od
16
Input Waveform Timing 1 (tDS, tDH)
Input Waveform Timing 2 (tIS, tIH)
uc t
Data Sheet E0789E11 (Ver. 1.1)
EBE51RD8AEFA-6
ODT AC Electrical Characteristics (DDR2 SDRAM Component Specification)
Parameter ODT turn-on delay ODT turn-on ODT turn-on (power down mode) ODT turn-off delay ODT turn-off ODT turn-off (power down mode) ODT to power down entry latency ODT power down exit latency Symbol tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD min. 2 tAC(min) tAC(min) + 2000 2.5 tAC(min) tAC(min) + 2000 3 8 max. 2 tAC(max) + 700 2tCK + tAC(max) + 1000 2.5 tAC(max) + 600 2.5tCK + tAC(max) + 1000 3 8 Unit tCK ps ps tCK ps ps tCK tCK 2 1 Notes
Notes: 1. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND. 2. ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.
EO
Parameter Input reference voltage
Data Sheet E0789E11 (Ver. 1.1)
AC Input Test Conditions
Symbol VREF VSWING(max.) SLEW Value 0.5 x VDDQ 1.0 1.0 Unit V V V/ns Notes 1 1 2, 3
Input signal maximum peak to peak swing Input signal maximum slew rate
Notes: 1. Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device under test. 2. The input signal minimum slew rate is to be maintained over the range from VIL(DC) (max.) to VIH(AC) (min.) for rising edges and the range from VIH(DC) (min.) to VIL(AC) (max.) for falling edges as shown in the below figure. 3. AC timings are referenced with input waveforms switching from VIL(AC) to VIH(AC) on the positive transitions and VIH(AC) to VIL(AC) on the negative transitions.
Start of falling edge input timing
VSWING(max.)
Falling slew =
L
TF
VIH (DC)(min.) - VIL (AC)(max.) TF
Pr
TR
Start of rising edge input timing
VDDQ VIH (AC)(min.) VIH (DC)(min.) VREF
AC Input Test Signal Wave forms
Measurement point
od
VSS
Rising slew = TR
VIL (DC)(max.) VIL (AC)(max.)
VIH (AC) min. - VIL (DC)(max.)
uc t
DQ RT =25
VTT
Output Load
17
EBE51RD8AEFA-6
Pin Functions
CK, /CK (input pin) The CK and the /CK are the master clock inputs. All inputs except DMs, DQSs and DQs are referred to the cross point of the CK rising edge and the VREF level. When a read operation, DQSs and DQs are referred to the cross point of the CK and the /CK. When a write operation, DQs are referred to the cross point of the DQS and the VREF level. DQSs for write operation are referred to the cross point of the CK and the /CK. /CS (input pin) When /CS is low, commands and data can be input. When /CS is high, all inputs are ignored. However, internal operations (bank active, burst operations, etc.) are held. /RAS, /CAS, and /WE (input pins) These pins define operating commands (read, write, etc.) depending on the combinations of their voltage levels. See "Command operation".
EO
Bank 0 Bank 1 Bank 2 Bank 3
Data Sheet E0789E11 (Ver. 1.1)
A0 to A13 (input pins) Row address (AX0 to AX13) is determined by the A0 to the A13 level at the cross point of the CK rising edge and the VREF level in a bank active command cycle. Column address (AY0 to AY9) is loaded via the A0 to the A9 at the cross point of the CK rising edge and the VREF level in a read or a write command cycle. This column address becomes the starting address of a burst operation. A10 (AP) (input pin) A10 defines the precharge mode when a precharge command, a read command or a write command is issued. If A10 = high when a precharge command is issued, all banks are precharged. If A10 = low when a precharge command is issued, only the bank that is selected by BA1, BA0 is precharged. If A10 = high when read or write command, auto-precharge function is enabled. While A10 = low, auto-precharge function is disabled. BA0, BA1 (input pin) BA0, BA1 are bank select signals (BA). The memory array is divided into bank 0, bank 1, bank 2 and bank 3. (See Bank Select Signal Table)
[Bank Select Signal Table]
Remark: H: VIH. L: VIL.
CKE (input pin) CKE controls power down and self-refresh. The power down and the self-refresh commands are entered when the CKE is driven low and exited when it resumes to high. The CKE level must be kept for 1 CK cycle at least, that is, if CKE changes at the cross point of the CK rising edge and the VREF level with proper setup time tIS, at the next CK rising edge CKE level must be kept with proper hold time tIH.
DQ, CB (input and output pins) Data are input to and output from these pins.
DQS (input and output pin) DQS and /DQS provide the read data strobes (as output) and the write data strobes (as input).
L
L H L H
Pr
BA0
BA1 L L
od
H H
uc
t
18
EBE51RD8AEFA-6
DM (input pins) DM is the reference signal of the data input mask function. DMs are sampled at the cross point of DQS and /DQS. DM function will be disabled when RDQS (DQS9 toDQS17 and /DQS9 to /DQS17) function is enabled by EMRS. VDD (power supply pins) 1.8V is applied. (VDD is for the internal circuit.) VDDSPD (power supply pin) 1.8V is applied (For serial EEPROM). VSS (power supply pin) Ground is connected.
EO
Data Sheet E0789E11 (Ver. 1.1)
/RESET(input pin) LVCMOS reset input. When /RESET is Low, all registers are reset. Par_IN (Parity input pin) Parity bit for the address and control bus. Err_Out (Error output pin) Parity error found on the address and control bus.
Detailed Operation Part and Timing Waveforms
Refer to the EDE5104AESK, EDE5108AESK datasheet (E0562E). DIMM /CAS latency = component CL + 1 for registered type.
L
Pr od uc t
19
EBE51RD8AEFA-6
Physical Outline
Unit: mm
4.00 max (DATUM -A-)
0.5 min
Component area (Front)
1 120
B
A 55.00 1.27 0.10
63.00 133.35
240
10.00
121
17.80
4.00 min
Component area (Back)
3.00
4.00
FULL R
Detail A
2.50 0.20
Detail B
1.00
(DATUM -A-)
4.00
0.20 0.15
2.50
FULL R
5.00
3.80
0.80 0.05
1.50 0.10
ECA-TS2-0093-01
30.00
EO
Data Sheet E0789E11 (Ver. 1.1)
L
Pr
20
od uc t
EBE51RD8AEFA-6
CAUTION FOR HANDLING MEMORY MODULES
When handling or inserting memory modules, be sure not to touch any components on the modules, such as the memory ICs, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on these components to prevent damaging them. In particular, do not push module cover or drop the modules in order to protect from mechanical defects, which would be electrical defects. When re-packing memory modules, be sure the modules are not touching each other. Modules in contact with other modules may cause excessive mechanical stress, which may damage the modules.
MDE0202
NOTES FOR CMOS DEVICES
EO
1 2 3
Data Sheet E0789E11 (Ver. 1.1)
PRECAUTION AGAINST ESD FOR MOS DEVICES
Exposing the MOS devices to a strong electric field can cause destruction of the gate oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it, when once it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. MOS devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. MOS devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor MOS devices on it.
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES
No connection for CMOS devices input pins can be a cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. The unused pins must be handled in accordance with the related specifications.
STATUS BEFORE INITIALIZATION OF MOS DEVICES
Power-on does not necessarily define initial status of MOS devices. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the MOS devices with reset function have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. MOS devices are not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for MOS devices having reset function.
L
Pr
21
od
uc
CME0107
t
EBE51RD8AEFA-6
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.
No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Elpida Memory, Inc. Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights (including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or third parties by or arising from the use of the products or information listed in this document. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of Elpida Memory, Inc. or others. Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of the customer's equipment shall be done under the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. [Product applications] Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability. However, users are instructed to contact Elpida Memory's sales office before using the product in aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment, medical equipment for life support, or other such application in which especially high quality and reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk of bodily injury. [Product usage] Design your application so that the product is used within the ranges and conditions guaranteed by Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no responsibility for failure or damage when the product is used beyond the guaranteed ranges and conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other consequential damage due to the operation of the Elpida Memory, Inc. product. [Usage environment] This product is not designed to be resistant to electromagnetic waves or radiation. This product must be used in a non-condensing environment. If you export the products or technology described in this document that are controlled by the Foreign Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by U.S. export control regulations, or another country's export control laws or regulations, you must follow the necessary procedures in accordance with such laws or regulations. If these products/technology are sold, leased, or transferred to a third party, or a third party is granted license to use these products, that third party must be made aware that they are responsible for compliance with the relevant laws and regulations.
EO
Data Sheet E0789E11 (Ver. 1.1)
L
Pr
22
M01E0107
od uc t


▲Up To Search▲   

 
Price & Availability of EBE51RD8AEFA-6E-E

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X